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Abstract. Metcalf and Yang have obtained the numerical estimate 0.3333k for the entropy 
per site of hard hexagons. They therefore conjectilre that the exact value is k/3. We have 
used the corner transfer matrix method to obtain a more accurate numerical estimate, 
namely 0.333 242 721 976 k, which contradicts the conjecture. The problem is a good 
example of the numerical accuracy of the method. 

1. Introduction 

Baxter (1968) developed a sequence of variational approximations for the monomer- 
dimer system on the square lattice. Numerically they were found to converge very well: 
at least six significant figures could be obtained from the first few approximations. 

This method has been generalised (Kelland 1976, Baxter 1978) to the Potts model, 
and to square lattice models with a face (e.g. nearest-neighbour, next-nearest neigh- 
bour, and ‘four-spin’ interactions). For an isotropic model it gives equations for the free 
energy and for two matrices A and F. In the limit when these matrices have infinite size, 
the equations are exact and A is the ‘corner transfer matrix’ of the model, while F is the 
‘half-row’ transfer matrix. The equations can be given a simple graphical interpretation 
in terms of building up a lattice out of quadrants and half-rows and half-columns. 

For the zero-field Ising model the infinite-size matrix equations have been solved 
exactly (Baxter 1977, Tsang 1977). The results, notably that for the magnetisation, of 
course agree with Onsager’s solution (Onsager 1944, Yang 1952). 

If the matrices are restricted to finite (even small) size, then quite good approxima- 
tions are obtained, and the approximation increases in accuracy as the size is increased. 
The rate of convergence should be least at a critical point, and very fast at low or high 
temperatures. 

For the zero-field Ising model these properties have been explicitly verified by 
Tsang (1979). They have been used by Baxter and Enting (1979) to obtain the first 23 
terms in the low-temperature series expansion of the Ising model in a field. To do this it 
was only necessary to take A and F to be 15 x 15 matrices. 

2. Variational approximation for the triangular lattice 

This method can be applied to the triangular lattice. Let the number of sites be N ;  at 
each site i let there be a ‘spin’ ui, with value + or -, and let the total energy be 
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where the sum is over all the 2N triangular faces ( i ,  j ,  k )  of the lattice and 6(ui, ui, [ + k )  is 
the energy of interaction of the three spins on a triangle. Let us further take the model 
to be isotropic, so that €(a ,  b, c) is unchanged by permuting a, b, c. 

The partition function is then 

where the summation is over all 2N values of {ul, . . . , uN}, and 

w ( a ,  b, c)  = exp[-e(a, 6, c ) / k T ]  

is the Boltzmann weight of a triangle of spins a, b, c. 
Let K be the partition function per site in the thermodynamic limit, i.e. 

K = lim z*”. 

Then the variational approximation for K is 

N+CO 

1 F ( a ,  b)A2(b)F(b, a )  = 8A4(a), 
b 

(3) 

1 w ( a ,  6, c)F(a ,  c)A(c)F(c, 6 )  = T ” ~ A ( u ) F ( u ,  b)A(b),  (46) 

K = 7/83 (4c 1 
AT(a)  = A(a) ,  FT(a, b )  =F(b ,  a) .  ( 4 4  

Here a, b, c have possible values + and -; each of F(+,  +), F(+,  -), F(- ,  +), F(- ,  -), 
A(+) ,  A ( - )  is a matrix; and 8 and 77 are positive real numbers. 

C 

3. Graphical interpretation 

The equations (4) can be interpreted graphically. Consider the lattice segments of r 
rows shown in figure 1. Let A denote all the spins on the left-hand edges other than the 
spin a at the top; similarly, let p denote all the right-hand spins other than a or b. Let 
A,,(a) be the combined Boltzmann weight of segment l (a) ,  summed over all interior 
spins; and let FA,(a, 6) be the corresponding weight for segment 1(b). 

Now let A ( a )  be the matrix with elements A,,(a) in position (A, p ) ;  similarly for 
F(a ,  b ) .  Then the equations (4a) and ( 4 b )  have the graphical representation given in 
figure 2, where each figure represents the combined Boltzmann weight of a section of 

/ / / - /  0 0  0 0 0  

0 0 0  0 0 0 0  
(a1 l b )  

Figure 1. Lattice segments corresponding respectively to the matrices A ( a )  and F(a,  b ) .  An 
appropriate boundary condition should be applied to the spins on the bottom row. 
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Figure 2. Graphical interpretation of equations ( 4 a )  and (4b), the summations over spins on 
broken lines being performed in anti-clockwise order. 

the lattice, further subdivided into A- and F-segments. Spins on solid circles or lines are 
free to take any allowed values (the same on each side of an equation). The Boltzmann 
weight is to be summed over all spins to the right of the solid lines, including those on 
open circles or broken lines. 

In each equation in figure 2, the LHS and RHS differ only in the number of sites to the 
right of the solid lines: in the first (second) equation there are 2r - 1 ( r )  more sites on the 
LHS than the RHS. When r is large we expect these extra sites merely each to contribute 
a factor K ,  independent of the values of the free spins on the solid circles and on nearby 
sites on the solid lines. Thus in this sense equations (4a) and ( 4 b )  will be satisfied, with 

9 ( 5 )  2r-1 ,,.,ID = K r  
5 = K  , 

so that equation ( 4 c )  is also satisfied. 
The A and F matrices can be renormalised to ensure that their elements tend to 

finite limits as r + CO. From equations ( 4 ) ,  this will affect 5 and 77, but not 7/5. Thus K 

will still be given by equation (4c). For any value of r, the symmetry relations ( 4 d )  are 
satisfied. 

The equations ( 4 )  are unaffected by the transformations 

A ( a )  + PT(a)A(4P(a ), F(a ,  b)+PT(a)F(a, b ) P ( b ) ,  (6) 
where P(+) and P(-)  are arbitrary orthogonal matrices. Thus one can always arrange 
that A(+)  and A ( - )  are diagonal matrices. 

We pre-multiply equation (4a) by A2(a) ,  and equation ( 4 b )  by A(b)F(b ,  a ) A ( a ) ;  
then summing, taking traces, and using equation (4c), we obtain 

This is a variational principle for K ,  in that the RHS is stationary when equations (4) are 
satisfied. 

To summarise this section: we can in principle construct infinite matrices A(a) ,  
F ( a ,  b )  such that equations (4) are satisfied exactly. Thus we expect that if we solve ( 4 )  
for finite-size matrices, and then let the size tend to infinity, we shall obtain a sequence 
of successively more accurate approximations to K .  
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4. Specialisation to hard hexagons 

From now on we specialise to hard hexagons with activity z ,  i.e. the triangular lattice gas 
with infinite nearest-neighbour repulsion. Let ci = + if site i is empty, - if it contains a 
particle. Two particles cannot be adjacent, so spins on adjacent sites cannot both have 
value -. Each negative spin contributes a factor z.  Sharing out this factor between the 
six surrounding triangles, it follows that 

if a = b  = c  =+, 

if any two of a,  b, c are --* 

Taking a = b = - in equation ( 4 b ) ,  it follows at once that 

if one of a,  b, c is -, the other two being +, (8) 
0 

F(- ,  -) = 0. (9) 

The density p is given by 

a 
p = z- In K .  

az 

Differentiating equation (7) with respect to z ,  using equation (8) and the fact that the 
RHS is stationary with respect to the A ( a )  and F(a,  b ) ,  and then using equation ( 4 ) ,  we 
obtain 

Tr A6(-) 
P =  Tr(A6(+) +A6(_))* 

(This equation has a very simple graphical representation: slice the lattice like a cake 
into six segments about a central point i. Each segment has Boltzmann weight A(a i ) .  
The denominator in equation (1 1 )  is the sum over all spin configurations on the lattice, 
while the numerator is the sum over configurations with ci = -. This ratio is of course 
the density.) 

5. The ‘Kramers-Wannier’ approximation 

It is helpful to start by considering the case when the matrices A ( a ) ,  F(a ,  b )  are 1 X 1 .  
(For the square lattice Ising model the corresponding approximation is equivalent to 
that of Kramers and Wannier (1941).) 

We can then choose 

A ( + )  = 1, A(-) = 6, F(+,  +) = 1, F(+,  -) = F(- ,  +) = g,  (12)  

1+gb2g=&, g 2  = 5b4, 1 + z1I6gbg = 77 ‘ I2 ,  1 / 6 g  = 77 112 

and the equations (4) become 

bg. (13) 

For a given value of b, these equations can easily be solved for z ,  g,  5, and 77. If we 

b 6 = x / ( 1 + x ) ,  ( 1 4 a )  

then introduce a variable x such that 
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then, using equations (4c) and (1 l), we obtain 

1 
K =  

(1 - x ) ( l  -x?’ 
X 

p=l+2x. 
The density must lie between 0 and the close-packed value of i, so x lies between 0 

and 1. For any positive value of z there is just one such value for x .  
This approximation is really very good at low activities and densities. (To obtain a 

good high-density approximation the equations must be modified to take account of the 
spontaneous breaking of the translation symmetry of the lattice.) It can be used to 
expand K in a Taylor series in z ,  giving 

K~~~~~~ = 1 + z - 32’ + 16z3 - 1 0 6 ~ ~  + 7892’ - 63 19z6 + . . . . (15a) 

To this order, the correct expansion can be obtained from the triangular Ising model 
results of Sykes et a1 (1965), by setting /1u3 = z and letting /1 + 0, U + 03, keeping z 
fixed. It is 

(15b) 

Thus even the 1 x 1 approximation gives K correctly to order z’, and in the coefficient of 
z6  is in error only by one! For z = 1 it gives In K = 0.333 050, and as we shall see later, 
this number is accurate to three significant figures. 

K ~ ~ ~ ~ ~ =  1 + ~ ~ - 3 ~ ~ + 1 6 ~ ~ - 1 0 6 ~ ~ + 7 8 9 ~ ’ - 6 3 1 8 ~ ~ + .  . . . 

6. Higher approximations 

It is useful to define four further matrices U(+),  U( - ) ,  R(+), R(-) by 

w(+, a, +M+, +) w(+, a, -IF(+, -1 
w(-, a, +IF(-, +) w(-, a, -IF(-, -) 

where a = + or -. Then equations (4a) and (4b) (interchanging a and b in the latter 
equation) can be written 

RT(a)R(a)  = I, (18) 

U ( a ) R ( a )  = R ( U ) ( T ~ ’ ~ A ( U ) ) ,  (19) 
where again a = + or -. 

The matrices U(+) and U(- )  are symmetric. Let us use the representation in which 
A ( + )  and A ( - )  are diagonal. Then it is obvious from equation (19) that the columns of 
R ( a )  are the eigenvectors of U ( a ) .  Equation (18) merely states that eigenvectors of the 
same matrix should be chosen to be orthonormal. 

As for the square lattice (Baxter 1978, Baxter and Enting 1979), we find the 
following iterative procedure converges for sufficiently small z ,  given a reasonable 
initial guess at 5, ri, A ( a ) ,  F(a,  b ) ,  where A(+)  is m x m and A ( - )  is n x n. 

(i) Calculate U ( + )  and U(- )  from equation (16). Ensure they are symmetric by 
setting the bottom-left elements equal to the top-right. 

(ii) Obtain their eigenvalues, arranged in numerically decreasing order, and the 
corresponding normalised eigenvectors. 
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(iii) Set 77 ' I 2  equal to the largest eigenvalue of A(+) .  Divide all eigenvalues by q112. 
Set the diagonal elements of A(+)(A(-)) equal to the first m ( n )  eigenvalues of 

(iv) Calculate the matrices F(a ,  6) from equation (17), choosing 6 so that the 

Repeat steps (i) to (iv) until sufficient accuracy is obtained. 
Given the solution for particular values of m and n, this procedure can also be used 

to obtain a reasonable guess at the solution for larger values. At stage (iii) one merely 
keeps not just the eigenvalues of U (  +) and U(- )  corresponding to the original A(+)  
and A ( - ) ,  but also the next largest of all the eigenvalues (or group of close-together 
next-largest eigenvalues), and modifies m or n accordingly. It is not necessary to keep 
all the eigenvalues, as has been previously suggested (Baxter 1978). This has been 
made clear by the series-expansion results of Baxter and Enting (1979). 

Starting from the Kramers-Wannier solution, with m = n = 1, and following this 
procedure, we can calculate each matrix element and eigenvalue to leading order in an 
expansion in powers of 2 .  Regarding two eigenvalues as 'close together' if they agree to 
leading order, or differ only by a factor z " ~ ,  we obtain the sequence of approximation, 
shown in table 1. In the fourth approximation, the elements of the matrices F ( a ,  b )  (to 
leading order in a z expansion) are given by 

U(+)(U(-)) .  

top-left element of F(+,  +) is unity. 

I 1 - 2  21 -25f  - z 8 f \  

2 3 

3 3 z 4  -2  -2  -z  - 2 6  I F(+, +) = 1 ::5; 

2 ;  

F(+,  -) = FT(-, +), F(- ,  -) = 0. 

Table 1. Values of m, n and the diagonal elements of A ( + ) ,  A( - )  (to leading order in a z 
expansion) for the first six approximations for hard hexagons. 

Approxn m n A(+)  z - " ~ A ( - )  

1 1 1 1  1 
2 2 1 1 , - 2  1 
3 3 2 1 , - z , z 2  1, z2 
4 4 3 I , - Z , ~ ~ , - Z ~  1, z2, - z 3  
5 6 4 1, - 2 ,  z2, - z 3 ,  z4, z4  1, 2, -z3, z4 
6 8 5 I, -2 ,  z2, -z3,  z4, z4, -2, - z 5  i , 2 ,  -z3,  z4, - z 5  

To leading order each matrix element is independent of the size of the approxima- 
tion, so long as the approximation is big enough to include it. (For instance, Fll(-, +) 
has leading term z113 in every approximation. Numerically, we find that the individual 
elements converge rapidly to their values for infinite matrices.) Thus to leading order 
the matrices F(a ,  b )  for approximations 1, 2 and 3 can be obtained by appropriately 
truncating the matrices in equations (20). 
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7. Numerical results for z = 1 

Metcalf and Yang (1978) have estimated the entropy of systems of particles with 
nearest-neighbour exclusion on various lattices. For the triangular lattice this is the 
hard-hexagon problem with z = 1, and the entropy per site is 

S = N-lk  In Z = k In K .  (21) 
By considering m x CO lattices, with m = 2, . . . , 9 ,  and diagonalising the transfer matrix 
numerically, they obtained the estimate 

S /k=In  K = 0 * 3 3 3 3 . .  . . (22) 
On the basis of this they conjectured that S/k might be exactly 4. If this were so it 

would be very interesting, for it would suggest that the problem could be solved exactly. 
We have therefore used the equations (4) and the above iterative procedure to 

obtain a better numerical estimate of In K for z = 1. Since this value is much less than 
the estimated critical value of 11 (Runnels and Combs 1966), we are well inside the 
low-density phase, and we expect the successive approximations to converge to the 
exact infinite-matrix solution. 

For each approximation, the iteration procedure converged reasonably rapidly, and 
the final solution had the general structure of table 1 and equation (20). (In fact it was 
approximately the same, but with z in table 1 and equation (20) replaced by an 
‘effective’ z of 0.255: presumably this effective z approaches 1 near the critical point.) 
This makes us confident that we have converged on the correct solution of the 
equations. 

We used double precision arithmetic and iterated until each individual element of 
the matrix equations (4) was satisfied to relative accuracy lo-”. Since K is only weakly 
sensitive to most of the elements, and not highly sensitive to any, we are therefore 
confident that in each approximation K is correct to at least this accuracy. 

In each approximation we calculated not only the diagonal elements of A(+)  and 
A(-) used in stage (iii), but also those not used, coming from the extra eigenvalues. Let 
A,,, be the largest of those not used. 

If the used ones were independent of the approximation (i.e. had their exact values 
for infinite matrices), then the effect of truncating the matrices to finite size would be to 
introduce an error into Tr(A6(+) +A6( - ) )  of approximately A:e,. Since this trace is of 
order unity, this is also the relative error. From equation (7) we might expect this to be 
approximately the relative error in K .  For the square-lattice Jsing model, Baxter and 
Enting (1979) found the corresponding assertion to be valid. 

Table 2. Values of In K for the first five approximations, together with their differences from 
the fifth value, A:=,,,, and p. Digits 13 to 16 are suspect, but their differences fit well enough 
with AR,,, to suggest that 13 and 14 in In K may be correct. 

Approxn InK Diff A L  P 

1 0.333 050 27 1.9 x 1.9 x 1 0 - ~  0.161 984 
2 0,333 242 657 00 6.5 x lo-* 5.6x lo-’ 0.162 432 600 
3 0,333 242 721 958 27 1.8 x lo-” 1.5 x lo-” 0.162 432 921 264 
4 0,333 242 721 976 0604 4.7 x lo-’’ 5.6 x 10-l5 0.162 432 921 397 391 
5 0,333 242 721 976 0651 1.5 x lo-’’ 0.162 432 921 397 499 
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In table 2 we have therefore plotted not only In K for the first five approximations, 
but also the differences from the last approximation, and A,6,, in each case. It seems 
that A,6,, is indeed a good measure of the error of an approximation. 

We have also tabulated the density p, given by equation (1.11, for each approxima- 
tion. This appears to be converging more slowly than In K to its limiting value (but still 
very fast). Presumably this reflects the fact that K is derived from a variational principle, 
and so should be less sensitive than p to the error caused by truncating the matrices to 
finite size. 

The results are clearly very encouraging for the variational method. The fourth 
approximation, which uses matrices no bigger than 4 x 4, already gives 

In K = 0.333 242 721 976, 

and we are confident this is correct to the twelve figures given. Unfortunately, this leads 
us to conclude that In K is not exactly 5 .  
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